Practices before the class (April 14)

e (T/F) If x is not in a subspace W, then x— projyx is not zero.

® (T/F) The general least-squares problem is to find an x that makes Ax as close as
possible to b.

e (T/F) If bis in the column space of A, then every solution of Ax =b is a
least-squares solution.

e (T/F) A least-squares solution of Ax = b is a vector % that satisfies A% = b, where b
is the orthogonal projection of b onto Col A.

e (T/F) Any solution of AT Ax = ATb is a least-squares solution of Ax = b.
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Practices before the class (April 14)

e (T/F) If x is not in a subspace W, then x— projyx is not zero. True. If x is not in a
subspace W, then x cannot equal projy x, because proj,y, x is in W.

® (T/F) The general least-squares problem is to find an x that makes Ax as close as
possible to b. True.

e (T/F) If bis in the column space of A, then every solution of Ax =Db is a
least-squares solution. True. If b is in the column space of A, then ||b — Ax||=0 for x
satisfying the equation Ax = b.

e (T/F) A least-squares solution of Ax = b is a vector % that satisfies A% = b, where b
is the orthogonal projection of b onto Col A. True. See the notes for § 6.5.

® (T/F) Any solution of AT Ax = ATb is a least-squares solution of Ax = b. True.
Check Theorem 13.
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6.5 Least-Squares Problems

7

Think of Ax as an approximation to b. The smaller the distance between b and Ax, given by |b — Ax
the better the approximation.

The general least-squares problem is to find an x that makes ||b — Ax|| as small as possible.

The adjective "least-squares" arises from the fact that ||b — Ax|| is the square root of a sum of squares.

Definition. If Ais m x nand bisin R™, a least-squares solution of Ax = bis an X in R" such that

forallxin R™,

b — Ax|| < [[b — Ax|

Col A

FIGURE 1 The vector b is closer to AX
than to Ax for other x.

Solution of the General Least-Squares Problem

The following steps help us to understand Theorem 13.

Given A and b as above, apply the Best Approximation Theorem in Section 6.3 to the subspace Col A.
Let

A~

b= projColA b

Because b is in the column space of A4, the equation Ax = b is consistent, and there is an X in R" such
that

~

Ax =b 1)

Since b is the closest pointin Col A to b, a vector X is a least-squares solution of Ax = b if and only if X
satisfies (1).
Such an x in R" is a list of weights that will build b out of the columns of A.



FIGURE 2 The least-squares solution X is in R”.

e Suppose X satisfies AX = b. By the Orthogonal Decomposition Theorem in Section 6.3, the projection
b has the property thatb — b is orthogonal to Col 4, so b — Ax is orthogonal to each column of A.

o Ifajisany columnof 4 thena;- (b — A%) = 0,anda (b — A%) = 0. Since each al is a row of A,
AT(b— A%) =0 (2)
® Thus
ATb - ATAx =0
e These calculations show that each least-squares solution of Ax = b satisfies the equation
ATAx = A"b (3)

The matrix equation (3) represents a system of equations called the normal equations for Ax = b. A solution
of (3) is often denoted by X.

Theorem 13 The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the
normal equations AT Ax = ATb.




Example 1 Find a least-squares solution of Ax = b by
(a) constructing the normal equations for X and

(b) solving for X.
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Example 2 Describe all least-squares solutions of the equation Ax = b,
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Theorem 14 Let A be an m x n matrix. The following statements are logically equivalent:
a. The equation Ax = b has a unique least-squares solution for each b in R™,

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.

When these statements are true, the least-squares solution X is given by

% = (AT4) 'ATb

Alternative Calculations of Least-Squares Solutions

The next example shows how to find a least-squares solution of Ax = b when the columns of A4 are
orthogonal.

Example 3 Find (a) the orthogonal projection of b onto Col A and (b) a least-squares solution of Ax = b.
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Theorem 15 Given an m X m matrix A with linearly independent columns, let A = QR be a Q R factorization
of A asin Theorem 12 . Then, for each b in R™, the equation Ax = b has a unique least-squares solution,
given by

x=R'Q™b
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Example 4 Let A = l3 4:| b= [4] ;= {_ﬂ ,and v = {_2] . Compute Au and Av, and compare
3 2 4

them with b. Is it possible that at least one of w or v could be a least-squares solution of Ax = b ? (Answer

this without computing a least-squares solution.)
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