Practices before the class (April 14)

- (T/F) If \mathbf{x} is not in a subspace W, then $\mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ is not zero.
- (T/F) The general least-squares problem is to find an \mathbf{x} that makes $A \mathbf{x}$ as close as possible to \mathbf{b}.
- (T/F) If \mathbf{b} is in the column space of A, then every solution of $A \mathbf{x}=\mathbf{b}$ is a least-squares solution.
- (T/F) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ that satisfies $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{b} onto $\mathrm{Col} A$.
- (T/F) Any solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$.

Practices before the class (April 14)

- (T/F) If \mathbf{x} is not in a subspace W, then $\mathbf{x}-\operatorname{proj} W \mathbf{x}$ is not zero. True. If \mathbf{x} is not in a subspace W, then \mathbf{x} cannot equal $\operatorname{proj}_{W} \mathbf{x}$, because $\operatorname{proj}_{W} \mathbf{x}$ is in W.
- (T/F) The general least-squares problem is to find an \mathbf{x} that makes $A \mathbf{x}$ as close as possible to \mathbf{b}. True.
- (T/F) If \mathbf{b} is in the column space of A, then every solution of $A \mathbf{x}=\mathbf{b}$ is a least-squares solution. True. If \mathbf{b} is in the column space of A, then $\|\mathbf{b}-A \mathbf{x}\|=0$ for \mathbf{x} satisfying the equation $A \mathbf{x}=\mathbf{b}$.
- (T/F) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ that satisfies $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{b} onto $\mathrm{Col} A$. True. See the notes for \S 6.5.
- (T/F) Any solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$. True. Check Theorem 13.

6.5 Least-Squares Problems

- Think of $A \mathbf{x}$ as an approximation to \mathbf{b}. The smaller the distance between \mathbf{b} and $A \mathbf{x}$, given by $\|\mathbf{b}-A \mathbf{x}\|$, the better the approximation.
- The general least-squares problem is to find an \mathbf{x} that makes $\|\mathbf{b}-A \mathbf{x}\|$ as small as possible.
- The adjective "least-squares" arises from the fact that $\|\mathbf{b}-A \mathbf{x}\|$ is the square root of a sum of squares.

Definition. If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^{m}, a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.

FIGURE 1 The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

Solution of the General Least-Squares Problem

The following steps help us to understand Theorem 13.

- Given A and \mathbf{b} as above, apply the Best Approximation Theorem in Section 6.3 to the subspace $\operatorname{Col} A$. Let

$$
\hat{\mathbf{b}}=\operatorname{proj}_{\mathrm{Col} A} \mathbf{b}
$$

- Because $\hat{\mathbf{b}}$ is in the column space of A, the equation $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent, and there is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
A \hat{\mathbf{x}}=\hat{\mathbf{b}} \tag{1}
\end{equation*}
$$

- Since $\hat{\mathbf{b}}$ is the closest point in $\operatorname{Col} A$ to \mathbf{b}, a vector $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1).
- Such an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} is a list of weights that will build $\hat{\mathbf{b}}$ out of the columns of A.

FIGURE 2 The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^{n}.

- Suppose $\hat{\mathbf{x}}$ satisfies $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. By the Orthogonal Decomposition Theorem in Section 6.3, the projection $\hat{\mathbf{b}}$ has the property that $\mathbf{b}-\hat{\mathbf{b}}$ is orthogonal to $\operatorname{Col} A$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to each column of A.
- If \mathbf{a}_{j} is any column of A, then $\mathbf{a}_{j} \cdot(\mathbf{b}-A \hat{\mathbf{x}})=0$, and $\mathbf{a}_{j}^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$. Since each \mathbf{a}_{j}^{T} is a row of A^{T},

$$
\begin{equation*}
A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} \tag{2}
\end{equation*}
$$

- Thus

$$
A^{T} \mathbf{b}-A^{T} A \hat{\mathbf{x}}=\mathbf{0}
$$

- These calculations show that each least-squares solution of $A \mathbf{x}=\mathbf{b}$ satisfies the equation

$$
\begin{equation*}
A^{T} A \mathbf{x}=A^{T} \mathbf{b} \tag{3}
\end{equation*}
$$

The matrix equation (3) represents a system of equations called the normal equations for $A \mathbf{x}=\mathbf{b}$. A solution of (3) is often denoted by $\hat{\mathbf{x}}$.

Theorem 13 The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

Example 1 Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by
(a) constructing the normal equations for $\hat{\mathbf{x}}$ and
(b) solving for $\hat{\mathbf{x}}$.

$$
A=\left[\begin{array}{rr}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-5 \\
8 \\
1
\end{array}\right]
$$

ANS: (a) The normal equation for $\frac{\vec{x}}{x}$ is

$$
A^{\top} A \vec{x}=A^{\top} \vec{b}
$$

We compute

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
12 & 8 \\
8 & 10
\end{array}\right] \\
& A^{\top} \vec{b}=\left[\begin{array}{lll}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
-5 \\
8 \\
1
\end{array}\right]=\left[\begin{array}{c}
-24 \\
-2
\end{array}\right]
\end{aligned}
$$

Thus the normal equations are

$$
\left[\begin{array}{cc}
12 & 8 \\
8 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-24 \\
-2
\end{array}\right]
$$

The augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
12 & 8 & -24 \\
8 & 10 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
3 & 2 & -6 \\
4 & 5 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 5 \\
3 & 2 & -6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & -x^{\prime} & -2 x^{3}
\end{array}\right] } \\
\sim & {\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 3
\end{array}\right] }
\end{aligned}
$$

Thus $\hat{\vec{x}}=\left[\begin{array}{c}-4 \\ 3\end{array}\right]$ is the least-square solution

Example 2 Describe all least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

ANS: The normal equations are $A^{\top} A \vec{x}=A^{\top} \vec{b}$. where

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right] \\
& A^{\top} \vec{b}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]=\left[\begin{array}{c}
14 \\
4 \\
10
\end{array}\right]
\end{aligned}
$$

The augmented matrix

$$
\left[\begin{array}{lll|r}
4 & 2 & 2 & 14 \\
2 & 2 & 0 & 4 \\
2 & 0 & 2 & 10
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus

$$
\left\{\begin{array}{l}
x_{1}=5-x_{3} \\
x_{2}=-3+x_{3} \\
x_{3}=x_{3}
\end{array}\right.
$$

$\hat{\vec{x}}=\left[\begin{array}{c}5 \\ -3 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ are the least-squares solutions to $A \vec{x}=\vec{b}$

Theorem 14 Let A be an $m \times n$ matrix. The following statements are logically equivalent:
a. The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
b. The columns of A are linearly independent.
c. The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

Alternative Calculations of Least-Squares Solutions
The next example shows how to find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ when the columns of A are orthogonal.

Example $\mathbf{3}$ Find (a) the orthogonal projection of \mathbf{b} onto $\mathrm{Col} A$ and (b) a least-squares solution of $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
5 \\
6 \\
6
\end{array}\right]
$$

ANS: Because the columns $\vec{a}_{1}, \vec{a}_{2}, \overrightarrow{a_{3}}$ for A are orthogond. the orthogonal projection of \vec{b} onto $\operatorname{Col} A$ is

$$
\hat{\hat{b}}=\operatorname{proj}_{\operatorname{Col} A} \vec{b}=\frac{\left\langle\stackrel{\rightharpoonup}{b}, \vec{a}_{1}\right\rangle}{\left\langle\vec{a}_{1}, \vec{a}_{1}\right\rangle} \vec{a}_{1}+\frac{\left\langle\stackrel{\rightharpoonup}{b}, \vec{a}_{2}\right\rangle}{\left\langle\stackrel{\rightharpoonup}{a}_{2}, \vec{a}_{2}\right\rangle}+\frac{\left\langle\vec{b}, \vec{a}_{3}\right\rangle}{\left\langle\vec{a}_{3}, \vec{a}_{3}\right\rangle}
$$

$$
=\frac{1}{3} \vec{a}_{1}+\frac{14}{3} \vec{a}_{2}-\frac{5}{3} \vec{a}_{3}
$$

$$
=\frac{1}{3}\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right]+\frac{14}{3}\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]-\frac{5}{3}\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
5 \\
2 \\
3 \\
6
\end{array}\right]
$$

(b) We can solve

$$
A \hat{\vec{x}}=\hat{\vec{b}}
$$

to find the least squares solution
From the above equation

$$
\hat{\vec{b}}=\frac{1}{3} \stackrel{\rightharpoonup}{a_{1}}+\frac{14}{3} \stackrel{\rightharpoonup}{a_{2}}-\frac{5}{3} \stackrel{\rightharpoonup}{a_{3}}
$$

We know the solution $\frac{\vec{x}}{}$ is obtained from the weights:

$$
\hat{\vec{x}}=\left[\begin{array}{c}
1 / 3 \\
14 / 3 \\
-5 / 3
\end{array}\right]
$$

Theorem 15 Given an $m \times n$ matrix A with linearly independent columns, let $A=Q R$ be a $Q R$ factorization of A as in Theorem 12 . Then, for each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}
$$

Example 4 Let $A=\left[\begin{array}{rr}2 & 1 \\ -3 & -4 \\ 3 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}5 \\ 4 \\ 4\end{array}\right], \mathbf{u}=\left[\begin{array}{r}4 \\ -5\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}6 \\ -5\end{array}\right]$. Compute $A \mathbf{u}$ and $A \mathbf{v}$, and compare them with \mathbf{b}. Is it possible that at least one of \mathbf{u} or \mathbf{v} could be a least-squares solution of $A \mathbf{x}=\mathbf{b}$? (Answer this without computing a least-squares solution.)
Ans:

$$
\begin{aligned}
& A \vec{u}=\left[\begin{array}{cc}
2 & 1 \\
-3 & -4 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
-5
\end{array}\right]=\left[\begin{array}{l}
3 \\
8 \\
2
\end{array}\right] \\
& \vec{b}-A \vec{u}=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right]-\left[\begin{array}{l}
3 \\
8 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4 \\
2
\end{array}\right] \text { and }\|\vec{b}-A \vec{u}\|=\sqrt{24} \\
& A \vec{v}=\left[\begin{array}{rr}
2 & 1 \\
-3 & -4 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
6 \\
-5
\end{array}\right]=\left[\begin{array}{c}
7 \\
2 \\
8
\end{array}\right] \\
& \vec{b}-A \vec{v}=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right]-\left[\begin{array}{l}
7 \\
2 \\
8
\end{array}\right]=\left[\begin{array}{r}
-2 \\
2 \\
-4
\end{array}\right] \text { and }\|\vec{b}-A \vec{v}\|=\sqrt{24}
\end{aligned}
$$

Notice that the columns of A are linearly inclependent So $A \vec{x}=\vec{b}$ has a unique least-square solution by Thu 14 .
Since $A \vec{u}$ and $A \vec{v}$ are equally close to \vec{b}. and the orthogonal projection is the unique closet point in Col A to \vec{b}. Thus neither \vec{u} nor \vec{v} can be a least-squares solution to $A \vec{x}=\vec{b}$.

