
Practices before the class (April 14)

• (T/F) If x is not in a subspace W , then x� projW x is not zero.

• (T/F) The general least-squares problem is to find an x that makes Ax as close as
possible to b.

• (T/F) If b is in the column space of A, then every solution of Ax = b is a
least-squares solution.

• (T/F) A least-squares solution of Ax = b is a vector x̂ that satisfies Ax̂ = b̂, where b̂
is the orthogonal projection of b onto ColA.

• (T/F) Any solution of ATAx = ATb is a least-squares solution of Ax = b.
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Practices before the class (April 14)

• (T/F) If x is not in a subspace W , then x� projW x is not zero. True. If x is not in a
subspace W , then x cannot equal projW x, because projW x is in W .

• (T/F) The general least-squares problem is to find an x that makes Ax as close as
possible to b. True.

• (T/F) If b is in the column space of A, then every solution of Ax = b is a
least-squares solution. True. If b is in the column space of A, then kb� Axk=0 for x
satisfying the equation Ax = b.

• (T/F) A least-squares solution of Ax = b is a vector x̂ that satisfies Ax̂ = b̂, where b̂
is the orthogonal projection of b onto ColA. True. See the notes for § 6.5.

• (T/F) Any solution of ATAx = ATb is a least-squares solution of Ax = b. True.
Check Theorem 13.
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6.5 Least-Squares Problems  

Think of  as an approximation to . The smaller the distance between  and , given by , 
the better the approximation.
 The general least-squares problem is to find an  that makes  as small as possible. 
The adjective "least-squares" arises from the fact that  is the square root of a sum of squares.

Definition. If  is  and  is in , a least-squares solution of  is an  in  such that

for all  in .

 

 

 

 

Solution of the General Least-Squares Problem

The following steps help us to understand Theorem 13. 

Given  and  as above, apply the Best Approximation Theorem in Section  to the subspace . 
Let

Because  is in the column space of , the equation  is consistent, and there is an  in  such 
that

Since  is the closest point in  to , a vector  is a least-squares solution of  if and only if  
satisfies (1). 

Such an  in  is a list of weights that will build  out of the columns of . 



Suppose  satisfies . By the Orthogonal Decomposition Theorem in Section , the projection 

 has the property that  is orthogonal to , so  is orthogonal to each column of . 

If  is any column of , then , and . Since each  is a row of  ,

Thus

These calculations show that each least-squares solution of  satisfies the equation

The matrix equation (3) represents a system of equations called the normal equations for . A solution 
of (3) is often denoted by .

 

Theorem 13  The set of least-squares solutions of  coincides with the nonempty set of solutions of the 
normal equations .

 

 

 

 

 

 

 

 

 



Example 1 Find a least-squares solution of  by 

(a) constructing the normal equations for  and 

(b) solving for .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS :(a) The normal equation for É is

ATA -5 -- ATI
we compute

A-' A= [
-2 a

2 I

' ° 3¥ :/ =L: :]
*e- f. : :# f- 1¥

Thus the normal equations are

18:11:/=p:)
The augmented matrix

[
12 8

-24J ~ (
3 2 -6

3 2 - g) ~ (
I 3 g-

4 5 y ] ~ (
' 3 5

8 10 -2 0 X
'

~ (
I 0 -4

0 I 3)
Thus ⇐ = f- 4) is the least -square solution
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Example 2 Describe all least-squares solutions of the equation .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS : The normal equations are ATA ☒ = AT b- .

where

** 1: : : :* : :/Y: : :2 0 2)
* =p :& Hf:/=/¥10 0

The augmented matrix
① 0 I 5

: : : ⇒ too - . -1( 2 2 O

O O O O

✗ , =
f- X}

Thus

µ= -3-1×3

✗3 = ✗ 3

= (Ig) -1 ×} are the least-squares solutions to A⇒ =I



 

Theorem 14  Let  be an  matrix. The following statements are logically equivalent:
a. The equation  has a unique least-squares solution for each  in .
b. The columns of  are linearly independent.
c. The matrix  is invertible.
When these statements are true, the least-squares solution  is given by

 

Alternative Calculations of Least-Squares Solutions

The next example shows how to find a least-squares solution of  when the columns of  are 
orthogonal.

Example 3 Find (a) the orthogonal projection of  onto  and (b) a least-squares solution of .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS : Because the columns ai , ai , ai for A are orthogonal.
the orthogonal projection of I onto 61A is

5- = proj I =
<I. ñ>

a-
.
+
<I. ai >

a:-,
<I.ai>ai

Cola <aiia . > <ai
,
ai> <as .at>

= Jai + ¥ ai -¥8 ,

= +3µg) -1 ¥ - ±3|
=p:|



(b) We can solve

AÉ = §
to find the least squares solution

From the above equation
= Jai + 1¥ ai - Jai

we know the solution ¥ is obtained

from the weights :

⇐
¥1



Theorem 15  Given an  matrix  with linearly independent columns, let  be a  factorization 
of  as in Theorem 12 . Then, for each  in , the equation  has a unique least-squares solution, 
given by

 

Example 4 Let , and   Compute  and , and compare 

them with . Is it possible that at least one of  or  could be a least-squares solution of  ? (Answer 
this without computing a least-squares solution.)

 

 

 

 

 

 

 

Ans :

Añ=(÷ EH -

- (F)
I-Añ=(¥ ) - (F) = and HI-AñH=F4

*=p;:/ Est -

- f:|
I -AT = (E) - (F) = f-§ /

and HI - ATH =F4

Notice that the columns of A are linearly independent
so AI = I has a unique least - square solution by -1hm 14

.

Since Añ and AJ are equally close to I. and the

orthogonal projection is the
unique closet point in

co /A to B . Thus neither ñ nor it can be a least-squares
solution to AI =D

.


