Practices before the class (April 14)

- (T/F) If **x** is not in a subspace W, then **x** proj_W**x** is not zero.
- (T/F) The general least-squares problem is to find an **x** that makes A**x** as close as possible to **b**.
- (T/F) If **b** is in the column space of *A*, then every solution of $A\mathbf{x} = \mathbf{b}$ is a least-squares solution.
- (T/F) A least-squares solution of Ax = b is a vector x̂ that satisfies Ax̂ = b̂, where b̂ is the orthogonal projection of b onto Col A.
- (T/F) Any solution of $A^T A \mathbf{x} = A^T \mathbf{b}$ is a least-squares solution of $A \mathbf{x} = \mathbf{b}$.

Practices before the class (April 14)

- (T/F) If x is not in a subspace W, then x proj_Wx is not zero. True. If x is not in a subspace W, then x cannot equal proj_W x, because proj_W x is in W.
- (T/F) The general least-squares problem is to find an **x** that makes A**x** as close as possible to **b**. True.
- (T/F) If b is in the column space of A, then every solution of Ax = b is a least-squares solution. True. If b is in the column space of A, then ||b Ax||=0 for x satisfying the equation Ax = b.
- (T/F) A least-squares solution of Ax = b is a vector x̂ that satisfies Ax̂ = b̂, where b̂ is the orthogonal projection of b onto Col A. True. See the notes for § 6.5.
- (T/F) Any solution of A^TAx = A^Tb is a least-squares solution of Ax = b. True. Check Theorem 13.

6.5 Least-Squares Problems

- Think of $A\mathbf{x}$ as an approximation to **b**. The smaller the distance between **b** and $A\mathbf{x}$, given by $\|\mathbf{b} A\mathbf{x}\|$, the better the approximation.
- The **general least-squares problem** is to find an \mathbf{x} that makes $\|\mathbf{b} A\mathbf{x}\|$ as small as possible.
- The adjective "least-squares" arises from the fact that $\|\mathbf{b} A\mathbf{x}\|$ is the square root of a sum of squares.

Definition. If A is m imes n and ${f b}$ is in \mathbb{R}^m , a **least-squares solution** of $A{f x}={f b}$ is an $\hat{f x}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all \mathbf{x} in \mathbb{R}^n .

FIGURE 1 The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other \mathbf{x} .

Solution of the General Least-Squares Problem

The following steps help us to understand Theorem 13.

• Given A and \mathbf{b} as above, apply the Best Approximation Theorem in Section 6.3 to the subspace $\operatorname{Col} A$. Let

$$\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col} A} \mathbf{b}$$

• Because $\hat{\mathbf{b}}$ is in the column space of A, the equation $A\mathbf{x} = \hat{\mathbf{b}}$ is consistent, and there is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}} \tag{1}$$

- Since $\hat{\mathbf{b}}$ is the closest point in Col A to \mathbf{b} , a vector $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1).
- Such an $\hat{\mathbf{x}}$ in \mathbb{R}^n is a list of weights that will build $\hat{\mathbf{b}}$ out of the columns of A.

FIGURE 2 The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

- Suppose $\hat{\mathbf{x}}$ satisfies $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. By the **Orthogonal Decomposition Theorem** in Section 6.3, the projection $\hat{\mathbf{b}}$ has the property that $\mathbf{b} \hat{\mathbf{b}}$ is orthogonal to $\operatorname{Col} A$, so $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to each column of A.
- If \mathbf{a}_j is any column of A, then $\mathbf{a}_j \cdot (\mathbf{b} A\hat{\mathbf{x}}) = 0$, and $\mathbf{a}_j^T (\mathbf{b} A\hat{\mathbf{x}}) = 0$. Since each \mathbf{a}_j^T is a row of A^T ,

$$A^T(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \tag{2}$$

• Thus

$$A^T \mathbf{b} - A^T A \hat{\mathbf{x}} = \mathbf{0}$$

• These calculations show that each least-squares solution of $A{f x}={f b}$ satisfies the equation

$$A^T A \mathbf{x} = A^T \mathbf{b} \tag{3}$$

The matrix equation (3) represents a system of equations called the **normal equations** for $A\mathbf{x} = \mathbf{b}$. A solution of (3) is often denoted by $\hat{\mathbf{x}}$.

Theorem 13 The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

Example 1 Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ by

(a) constructing the normal equations for $\hat{\boldsymbol{x}}$ and

(b) solving for $\hat{\mathbf{x}}$.

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}, b = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$$

$$AWS: (a) The normal equation for \hat{x} is
$$A^{T}A \vec{x} = A^{T}\vec{b}$$
We compute
$$A^{T}A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix}$$

$$A^{T}\vec{b} = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$$
Thus the normal equations are
$$\begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$$
The sugmented matrix
$$\begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$$
The sugmented matrix
$$\begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$$

$$\sum_{i=1}^{n} \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & -6 \end{bmatrix} \land \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & -6 \end{bmatrix} \land \begin{bmatrix} 1 & 3 & 5 \\ 0 & -7 \end{bmatrix} \land \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & -6 \end{bmatrix} \land \begin{bmatrix} 1 & 3 & 5 \\ 0 & -7 \end{bmatrix} \land \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \end{bmatrix}$$
Thus $\hat{x} = \begin{bmatrix} -4 \\ -3 \end{bmatrix}$ is the least-square solution$$

Example 2 Describe all least-squares solutions of the equation $A\mathbf{x} = \mathbf{b}$.

$$A = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{bmatrix}, \mathbf{b} = egin{bmatrix} 1 \ 3 \ 8 \ 2 \end{bmatrix}$$

ANS: The normal equations are $A^T A \overrightarrow{x} = A^T \overrightarrow{b}$, where $A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$ $A^{T}\overline{b} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} 14 \\ 4 \\ 10 \end{bmatrix}$ The argmented matrix

$$\begin{bmatrix} 24 & 2 & 2 & | 14 \\ 2 & 2 & 0 & | 4 \\ 2 & 0 & 2 & | 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & | 5 \\ 0 & 1 & -1 & | 5 \\ 0 & 0 & 0 & | 0 \end{bmatrix}$$

Thus
$$\begin{cases} x_1 = 5 - x_3 \\ x_2 = -3 + x_3 \\ y_3 = x_3 \end{cases}$$

$$\hat{x} = \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \text{ are the least-squares solutions to } A \neq = \hat{b}$$

Theorem 14 Let *A* be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Alternative Calculations of Least-Squares Solutions

The next example shows how to find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ when the columns of A are orthogonal.

Example 3 Find (a) the orthogonal projection of **b** onto $\operatorname{Col} A$ and (b) a least-squares solution of $A\mathbf{x} = \mathbf{b}$.

_

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 6 \end{bmatrix}$$

AUS: Because the columns $\vec{a}_1, \vec{a}_2, \vec{a}_3$ for A are orthogonal the orthogonal projection of \vec{b} onto (oIA is)

$$\hat{\vec{b}} = \text{proj}_{\vec{c}} \vec{\vec{b}} = \frac{\langle \vec{b}, \vec{a}_1 \rangle}{\langle \vec{a}_1, \vec{a}_2 \rangle} \vec{a}_1 + \frac{\langle \vec{b}, \vec{a}_2 \rangle}{\langle \vec{a}_2, \vec{a}_2 \rangle} \vec{a}_2 + \frac{\langle \vec{b}, \vec{a}_3 \rangle}{\langle \vec{a}_3, \vec{a}_3 \rangle} \vec{a}_3$$

$$= \frac{1}{3} \vec{a}_1 + \frac{14}{3} \vec{a}_2 - \frac{5}{3} \vec{a}_3$$

$$= \frac{1}{3} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + \frac{14}{3} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 2 \\ 3 \\ 6 \end{bmatrix}$$

(6) We can solve $A\hat{x} = \hat{b}$ to find the least squares solution From the above equation 百言言,十些前一美丽 We know the solution 文 is obtained from the weights:

Theorem 15 Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A as in Theorem 12. Then, for each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$$

Example 4 Let $A = \begin{bmatrix} 2 & 1 \\ -3 & -4 \\ 3 & 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$. Compute $A\mathbf{u}$ and $A\mathbf{v}$, and compare

them with **b**. Is it possible that at least one of **u** or **v** could be a least-squares solution of $A\mathbf{x} = \mathbf{b}$? (Answer this without computing a least-squares solution.)

AWS:
$$A\vec{u} = \begin{bmatrix} 2 & 1 \\ -3 & -4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 2 \end{bmatrix}$$

 $\vec{b} - A\vec{u} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$ and $||\vec{b} - A\vec{u}|| = \sqrt{24}$
 $A\vec{v} = \begin{bmatrix} 2 & 1 \\ -3 & -4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \\ 8 \end{bmatrix}$
 $\vec{b} - A\vec{v} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 7 \\ 2 \\ 8 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 8 \end{bmatrix}$ and $||\vec{b} - A\vec{v}|| = \sqrt{24}$

Notice that the columns of A are linearly independent So $A\vec{x} = \vec{b}$ has a unique least-square solution by Thm 14. Since $A\vec{u}$ and $A\vec{v}$ are equally close to \vec{b} , and the orthogonal projection is the unique closet point in ColA to \vec{b} . Thus neither \vec{u} nor \vec{v} can be a least-squares solution to $A\vec{x} = \vec{b}$.